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ABSTRACT 

 Information theory can be applied wherever measurements are describable by 

random variables. Here I applied it to the study of jazz rhythm, using entropy to study 

perceived rhythmic complexity, to ascertain rhythmic differences between soloists, and to 

quantify the increase in complexity in embellished versions of popular song, and using 

mutual information to study soloist-accompanist interactions. 

 I experimentally studied the effects of entropy, periodicity, syncopation, 

number/density of notes, and order effects on perceived rhythmic complexity. One model 

showed that entropy, number/density of notes, and order effects were significant factors 

in the perception of rhythmic complexity; another showed that periodicity, syncopation, 

number/density of notes, and order effects were significant. Thus entropy is a significant 

factor in the perception of rhythmic complexity, though it is likely that it is mediated by 

periodicity. 

I analyzed eighty-eight transcriptions of solos by Armstrong, Hawkins, Young, 

Christian, and Parker, and made pairwise comparisons for entropy. I found that Young’s 

solos had significantly greater entropy than solos by Armstrong, Christian, and Parker. 

One pairwise comparison, Hawkins vs. Parker, was surprising in that the entropy for 

Parker was less (though not significantly so) than that for Hawkins. One possible 

explanation is that the density of stress accents for Hawkins was greater than that for 

Parker, while the opposite was true for contour accents. I also used the estimated 

marginal means technique to debunk two commonly held chronological notions about the 

solos of Armstrong and Young. 
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 Finally, I used mutual information to study soloist-accompanist interactions. I did 

so by calculating MI for accented notes in ten Parker solos with Charleston comping 

rhythms, actual comping rhythms and random comping rhythms. MI was highest for 

random rhythms and lowest for Charleston rhythms. 
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1 Introduction 

The field of research on rhythmic complexity is a fertile one. In recent decades, a 

plethora of methods for quantifying rhythmic complexity has been introduced. 

Nonetheless, an exact definition of rhythmic complexity is hard to come by. One intuitive 

definition might be that rhythmic complexity reflects the difficulty of performing a given 

rhythm. Another might reflect the difficulty of tapping along with a rhythm, or recalling a 

rhythm after a certain amount of time has elapsed. And in some cases, a listener might 

imagine how difficult it would be to perform a particular rhythm. In fact, each of these 

definitions has been used, e.g. in studies by Shmulevich and Povel (2000), and Fitch and 

Rosenfeld (2007). In any case, the approach taken here asked experimental subjects to 

rely on their own intuitive ideas about rhythmic complexity in order to rate excerpts for 

complexity on a scale of one to seven. 

The study of rhythmic complexity allows us to compare complexity in music to 

complexity in other fields. This is partially due to the fact that at its most basic, music can 

be understood as a form of communication. Semiotically speaking, of course, it is more 

vague than other forms of communication such as speech – the relationships between 

signifier and signified are less specific in music than in speech – but it is useful 

nonetheless to treat music as communication, for reasons discussed below. Though in 

most cases it is unlikely that any two different listeners will agree 100% on what a given 

piece of music communicates, they might agree more often on how it communicates – 

and the analysis of how a piece communicates is the realm of music theory.  
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Beyond speech and music, of course, there are many other forms of 

communication as well, notably the digital transmission of sound or video; the theory 

undergirding such types of communication dates to the mid-20th century, and goes under 

the name of information theory. Shannon (1948) laid the groundwork for this field in his 

seminal work A Mathematical Theory of Communication. Since then, information theory 

has been applied in many fields outside of communication theory, including music. 

How is it possible that a theory devised for the electrical transmission of signals 

can also be applied to music? The answer comes from Leonard Meyer and his work 

linking expectation in music – specifically, thwarted expectation – to meaning (1956, 

1957). Meyer posits that low probability events in the context of a given piece (that is, 

events which thwart our expectations) have more information, and thus more meaning, 

than high probability events. Keeping in mind that, quoting Joel Cohen (1962), 

“statistical probability, or relative frequency, corresponds to the listener’s expectations,” 

there is then a natural correspondence between information theory and meaning in music. 

To wit, information theory deals with Cohen’s probabilities – thus, with expectation – 

and these comprise the information content of a set of events; hence the correspondence 

between music theory and information theory. 

Thus, treating music as a form of communication allows us to apply the 

techniques of information theory to music. That is what is done here. 

 

1.1 Introduction to Entropy 

 Shannon Entropy (here, just “entropy”), introduced in A Mathematical Theory of 

Communication, is information theory’s most fundamental concept, and has been 
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employed in many fields. Roughly speaking, it measures the “unpredictability” of a 

sequence of events (Cover and Thomas, 2006). Its wide applicability is probably due to 

its simplicity: as will be demonstrated later, any quantity that can be described by a 

probability distribution can be described, using a simple formula, by entropy. As a quick 

Wikipedia search will indicate, fields in which entropy has been applied include 

statistical inference, cryptography, neurobiology, perception, bioinformatics, thermal 

physics, quantum computing, information retrieval, intelligence gathering, plagiarism 

detection, pattern recognition, anomaly detection, and others. Therefore, it should not 

come as a surprise that it has been applied in the field of music theory. 

A cluster of papers applying entropy to music appeared in the fifties and early 

sixties (Pinkerton 1956; Meyer 1956, 1957; Youngblood 1958; Cohen 1962), applying 

the concept of entropy to pitch structures and laying the philosophical groundwork for the 

field. A PhD dissertation in 1959 (Crawley), which I have not examined, pioneered the 

application of information theory to rhythm, and a single paper applying information 

theory to both pitch and rhythm (Hiller and Fuller) appeared in 1967. Several papers in 

the eighties and early nineties refined the earlier work (Knopoff and Hutchinson 1981; 

Knopoff and Hutchinson 1983; Snyder 1990), and since 2002, there have been a number 

of papers and books on information theory and music, going beyond entropy-based 

analysis and working with the information content of individual events and with a 

generalization of entropy called Markov chains: Abdallah 2002; Pearce and Wiggins 

2004; Sadakata et al. 2006;.Huron 2006; Temperley 2007; and Margulis and Beatty 2008. 

Finally, since the late nineties and early two-thousands, a number of papers using Markov 

chains to analyze and compose jazz have appeared, including: Yarom (1997); Gillick, 
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Tang, and Keller (2010); Pfeiderer and Krizler (2010); Bell (2011); Victor (2012); 

Norgaard, Spencer, and Montiel (2013); Linskens and Schoenmakers (2014); Yun 

(2016); Rouse (2017); Quick and Thomas (2019); and Frieler (2019). 

While experiments have been used to compare many computed measures of 

rhythmic complexity to perceived rhythmic complexity, to my knowledge, experiments 

directly involving entropy have been rare: an article by Thul and Toussaint (2008), and 

two by De Fleurian et al. (2014 and 2017). And to my knowledge, there have been no 

previous studies of mutual information applied to music. 

 

1.2 Mathematical Preliminaries I: Definition of Entropy 

A “random variable” is a variable which, when measured, can take on one of 

several values with a given probability of occurrence for each value1. The set of values a 

random variable can take on is called its “sample space,” and the set of probabilities with 

which a random variable takes on its various values is described by its “probability 

distribution.” The probability with which a given value of the random variable occurs 

ranges from zero (no probability of occurring; this value would not technically be a part 

of the probability distribution) to one (100% probability of occurring; this value would be 

the only value in the probability distribution). The sum of all values represented by a 

probability distribution is always one, since something must occur. 

Most of the random variables we will be working with measure the inter-onset 

intervals (IOIs) between dynamically accented notes in solos by well-known jazz 

 
1 I will focus here on “discrete” random variables, since the calculated entropy values I use are constructed 
from discrete random variables. This is not affected by the fact that the entropy values themselves are 
treated as continuous variables. 
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musicians.2 Roughly speaking, dynamically accented notes are simply notes which are 

louder than surrounding notes (Roeder 2017); a more detailed explanation of how 

accented notes are identified is given later, in the section on computational results. Inter-

onset intervals are defined as the durational distances between the attacks or onsets of 

pairs of notes (Patel and Danielle 2003). While the time delays between accented notes in 

a solo are not, of course, actually random, we can glean important information about a 

solo (in particular, about the unpredictability of its rhythms) by treating it as though time 

delays have been selected at random from the distribution of time delays describing that 

solo. 

Figure 1 provides an example of how I obtain probability distributions from solos; 

there are other ways, of course, but this is the method I use. Figure 1 is a brief excerpt 

from Lester Young’s solo on “Blues for Greasy;”3 accent marks indicate dynamic 

accents. Having identified dynamically accented notes, the next step is to tabulate the 

inter-onset intervals. 

 

Figure 1. Musical example for calculating a probability distribution 

Note that for solos in which the eighth-notes are “swung,” care must be taken to 

identify when an accent falls on the long or short part of the beat, since this may affect 

the IOIs involving that accent. In this example, there are two examples of IOIs that 

 
2 In Section 5, the random variables are the sixteen possible combinations of eighth-note onsets and ties or 
rests in a two quarter note window of time. 
3Note that this was almost certainly not recorded as a “blues in B;” it was most likely a blues in C or B flat, 
and the discrepancy is probably due to problems with the recording apparatus. This does not affect entropy. 
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depend on whether they start with long eighths or short eighths: seven eighth-notes 

starting on the long part of the beat (beat one in m. 2 to the “and” of four in m. 2; beat 

one in m. 5 to the “and” of four in m. 5), and seven eighth-notes starting on the short part 

of the beat (the “and” of one in m. 4 to beat one in m. 5). A distinction must be made 

since one of them will have duration L+S+L+S+L+S+L and the other will have duration 

S+L+S+L+S+L+S, where L is the duration of the long half and S is the duration of the 

short half of the swung eighth-note pair. (The distinction need not be made for IOIs 

consisting of an even number of eighth-notes). 

We can assign numerical values to each of these IOIs, assuming that the ratio of 

the long part of the beat to the short part of the beat is 2:1, in other words, that the length 

of the long part of the beat is 1.333 eighth-notes and the length of the short part of the 

beat is 0.667. (This assumption will be examined more closely in Section 3). Note that 

the ratio is 2:1 and that they sum to two eighth-notes, or one quarter. The IOI of seven 

eighth-notes starting on the long part of the beat is 7.333 eighth-notes long, while the IOI 

of seven eighth-notes starting on the short part of the beat is 6.667 eighth-notes long. 

With this in mind, the frequency of each IOI may be tabulated as follows: two 

eighth-notes, one; 7.333 eighth-notes, two; 6.667 eighth-notes, one; ten eighth-notes, one. 

Note that there are six accents, thus five IOIs. Probabilities are obtained by dividing 

frequencies by five. The resulting distribution is given in Table 1. 

 

IOI (eighth-notes) 2.00 6.67 7.33 10.00 

Probability 1/5 1/5 2/5 1/5 

Table 1. Probability distribution for excerpt in Figure 1 
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In his 1948 paper, A Mathematical Theory of Communication, Claude Shannon 

derived the following formula for entropy based on three simple axioms: 

 H ≡ – ∑ 𝑝𝑝x (𝑥𝑥)log(𝑝𝑝(𝑥𝑥)) Eq. 1 

where p(x) is the probability with which a variable X takes on the value x and the sum is 

over all possible values of x. The convention adopted here, common in information theory, 

will be to use logarithms of base 2, so that entropy will be measured in what information 

theorists call “bits.” 

Continuing with the current example, we can calculate entropy directly from 

Equation 1 using the probability distribution in Table 3. 

The calculation is given by: 

 H = – (1/5)log2(1/5) – (1/5)log2(1/5) – (2/5)log2(2/5) – (1/5)log2(1/5) = Eq. 2 

 (3/5)*log2(5) +(2/5)log2(5/2) = 1.922 

While this is an artificially simple example, it captures the essence of how I 

calculate entropy for musical excerpts. Note, by the way, that the entropy calculation 

does not explicitly rely on the values of the IOIs; all that matters is the form of the 

probability distribution itself. 

 

1.3 Mathematical Preliminaries II: Further Examples and Caveats 

Here I examine three contrasting examples.  

First, consider the rhythm shown in Figure 2, which represents an excerpt in 

which the first of every four beats is accented (only accented notes are displayed). This is 

not an uncommon situation in unsyncopated music. Intuitively, we expect the entropy to 

be zero, since there is no uncertainty in the IOI’s. Mathematically, there is only one non-
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zero probability, and it must equal one. Therefore, the logarithm in equation 2.1, and thus 

the entropy, is equal to zero. 

 

Figure 2. A zero entropy rhythm 

Next consider the situation illustrated in Figure 3; there is considerably more 

variation in time delays here. First of all, there are eight different time delays represented 

here, from one eighth note to an entire measure. Secondly, each of these values occurs 

with equal probability (1/8). This situation (equal probability for each value) represents 

the maximum entropy distribution for a given number of possible values a random 

variable can take on. For n possible values, the maximum entropy is log2 n, and in this 

case the entropy is log2 8=3. 

 

Figure 3. A maximum entropy rhythm 

Finally, consider the situation illustrated in Figure 4, the Charlie Parker 

composition “Billie’s Bounce”; the distribution of probability of occurrence vs. IOIs is 

shown in Figure 5. As discussed previously, care must be taken to identify these IOIs; 

though at first glance it might appear that there is only one IOI – three eighth-notes – 

between the first seven pairs of accents, some of them start on long eighth-notes and 

some of them on short eighth-notes. So in Figure 5, note that there are points that fall just 

to the left of three on the x axis and points that fall just to the right of three on the x axis, 

reflecting the unevenness of the swung eighth-note pairs. The IOI between the accent on 
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beat four of measure three and the accent on beat one of measure four is two eighth-

notes, between the accent on beat one of measure four and the accent on beat three of 

measure four is four eighth-notes, and so on. 

The entropy of this melody is 2.503, and it has seven distinct IOIs. The entropy 

for seven equiprobable categories of IOI (the maximum-entropy situation for seven IOIs), 

would be log2 7=2.807. It is not surprising that the entropy for “Billie’s Bounce” is less 

than the entropy for eight equiprobable IOIs (the example discussed above), since, a) 

there are fewer IOI categories for “Billie’s Bounce,” and b) the distribution is not 

equiprobable (see Figure 5), a requirement for maximum entropy given a fixed number of 

distinct IOIs. 

 

Figure 4. “Billie’s Bounce” (head) by Charlie Parker 

Some authors define a quantity I will call “normalized entropy,” which I define 

here in the context of IOIs and rhythm. Normalized entropy, for a rhythm having n 

distinct IOIs, is obtained by dividing entropy by the maximum entropy obtainable for that 

many IOI’s: log2n. Thus, for n distinct IOI’s, and unnormalized entropy H, normalized 

entropy is given by the following expression:  
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 HN = H / log2n Eq. 3 

Some authors use the term “relative entropy” for this quantity, but this is a misnomer 

since, according to Cover and Thomas (2006), the term “relative entropy” is reserved for 

something else (see below).  

While normalized entropy gives an idea of how high the entropy of an excerpt is 

relative to its maximum value, it has a serious flaw. To see this, consider the probability 

distribution for the Charleston rhythm (rhythm shown in Figure 6). It consists of two 

IOIs: 3 eighth notes and 5 eighth notes, both of which occur once in each measure. Thus, 

the entropy is maximized for this many distinct IOIs, and the normalized entropy is: 

 HN = (– 0.5*log2 (0.5) – 0.5* log2(0.5))/ log2(2) =  Eq. 4 

 0.5*log2 (2)+0.5*log2 (2) = 1 

 

Figure 5. Probability distribution for Parker’s “Billie’s Bounce” 
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Figure 6. The Charleston rhythm 

 A much more complex rhythm, however, might have substantially lower normalized 

entropy. For example, the melody of “Billie’s Bounce” would have a normalized entropy 

of just 0.892, since the raw entropy obtained from it is 2.503, and the entropy for seven 

equiprobable categories is 2.807. Margulis and Beatty (2008) call this the “rare interval 

problem”: if one adds just one instance of an IOI not already present in a given 

distribution, the denominator of the normalized entropy formula increases substantially, 

while the unnormalized entropy increases only slightly and this reduces the normalized 

entropy. 

 Despite the problems inherent in using normalized entropy, many authors use it to 

define a related concept, redundancy, using the following formula: 

 R = 1 – HN Eq. 5 

Redundancy varies between zero and one, with zero corresponding to maximum 

normalized entropy, and one to minimum normalized entropy. Intuitively, R represents 

the predictability of a probability distribution, though given the limitations of normalized 

entropy, it must be used with caution. 

 In Chapter 5 it will be shown that the issue of normalization can be sidestepped 

by evaluating the entropy for each excerpt separately, and making pairwise comparisons 

between musicians based on entropy using a method called “estimated marginal means.” 

 

 



16 

1.4 Mathematical Preliminaries III: Relative Entropy and Mutual Information 

Having discussed entropy, normalization, and redundancy, I now introduce the 

concepts of relative entropy and mutual information. 

The “relative entropy,” also called “Kullback-Leibler distance” or “Kullback-

Leibler divergence” (I will use the abbreviation KLD) of two random variables defined 

on the same sample space with probability distributions p(x) and q(x) is given by (Cover 

and Thomas, 2006): 

 D(pǁq) ≡ ∑ 𝑝𝑝x (𝑥𝑥) log2(𝑝𝑝(𝑥𝑥)/𝑞𝑞(𝑥𝑥))   Eq. 6 

This is not a true “distance,” since, for one thing, it is not symmetrical with respect to p 

and q, but it is often useful to think of it as one (ibid.). It will be used here to define 

mutual information. 

Several terms must be defined in order to understand mutual information. The 

elements of the product space x⊗y are all of the ordered pairs (a, b), where a is drawn 

from the set comprised of all values of x and b is drawn from the set comprised of all 

values of y. Given a random variable X and a random variable Y, their joint probability 

distribution, defined on the product space x⊗y and notated J(x,y), is the probability that X 

= x and Y = y simultaneously. The marginal distributions, p(x) and q(y), give the 

probabilities that X = x and Y = y individually. The marginal distributions can be 

calculated from the joint distribution as follows: 

 p(x) = ∑ 𝐽𝐽(𝑥𝑥,𝑦𝑦)y  Eq. 7(a)    

 q(y) = ∑ 𝐽𝐽(𝑥𝑥,𝑦𝑦)x  Eq. 7(b) 
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This makes sense because for p(x), we are not interested in values of y, but in the 

probabilities of x regardless of y, so for a given x we sum over all values of y to obtain the 

marginal distribution p(x). A similar argument holds for q(y). 

Two random variables are considered “independent” if knowledge of the value of 

one does not affect our knowledge of the other. Two random variables are independent if 

and only if their joint probability distribution is equal to the product of their marginal 

probability distributions, in other words, if 

 J(x,y) = p(x) q(y) Eq. 8 

 With these concepts in hand, I can now turn to the concept of mutual information. 

Given two random variables X and Y defined on the cross product space x⊗y with joint 

distribution J(x,y) and marginal distributions p(x) and q(y), mutual information is defined 

as the relative entropy (KLD or “distance”) between the joint distribution function and 

the distribution that would obtain in the case of complete independence, namely, the 

product distribution function of the marginals. In the following formula, MI(X,Y) is the 

mutual information. Note that it is symmetrical with respect to X and Y, that is, MI(X,Y) = 

MI(Y,X): 

 MI(X,Y) = ∑ 𝐽𝐽(𝑥𝑥,𝑦𝑦) log2(𝐽𝐽(𝑥𝑥,𝑦𝑦) /𝑝𝑝(𝑥𝑥)𝑞𝑞(𝑦𝑦))𝑥𝑥⊗𝑦𝑦  Eq. 9 

 = ∑ ∑ 𝐽𝐽(𝑥𝑥, 𝑦𝑦)𝑦𝑦 log2(𝐽𝐽(𝑥𝑥, 𝑦𝑦)/𝑝𝑝(𝑥𝑥)𝑞𝑞(𝑦𝑦))𝑥𝑥  

This definition makes sense if mutual information is considered to be the “distance” 

between the actual joint distribution and the product distribution. These distributions 

would be equal (and hence, the mutual information would evaluate to zero) only in the 

case of complete independence; the further from independence the actual joint 

distribution is, the more one distribution tells us about the other. Intuitively, mutual 
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information “is the reduction in the uncertainty of one variable due to the knowledge of 

the other” (ibid., 19). 

 

2 Experimental Methods and Results 

While experiments have been used to compare many computed measures of 

rhythmic complexity to perceived rhythmic complexity, to my knowledge, experiments 

directly involving entropy and rhythm have been rare: an article by Thul and Toussaint 

(2008), and two by De Fleurian et al. (2014 and 2017). The first of these uses inter-onset 

intervals to calculate entropy and finds that “[t]he complexity measures based on 

statistical properties of the inter-onset interval histograms [including entropy] are poor 

predictors of syncopation or human performance complexity” (663). We will return to 

these conclusions later. 

De Fleurian et al., in both of their papers, ask subjects to listen to test rhythms, to 

decide whether they should be followed by a note or a rest, and to judge how easy it was 

to come to a decision. They average the results and correlate them with five computed 

information theoretic quantities: Shannon entropy, entropy rate, excess entropy, transient 

information, and Kolmogorov complexity, and find that only entropy rate and 

Kolmogorov complexity predict experimental findings well. 

The present work takes a direct approach - also used by by Thul and Toussaint 

(2008) - asking subjects to rank eighteen short rhythmic excerpts (seventeen with one 

duplicate) for complexity.4 It explores the effects of several variables, based on the 

hypothesis that they will prove to be significant factors in the perception of rhythmic 

 
4 This was inadvertent, the result of translating an experiment meant to be conducted in person to a virtual 
platform. Fortunately, the built-in redundancy of the experiment meant that results were not jeopardized. 
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complexity: entropy (calculated from IOIs between accented notes in jazz solos), 

periodicity, syncopation, number/density of notes, and jazz experience level. It takes into 

account order effects, and, finally, it explores how entropy and the other variables 

compare and contrast with one another. 

It will be important in what follows to distinguish between these related numerical 

concepts. Note that while in this section, perceived complexity is the dependent variable 

of interest, in the following section, entropy is the dependent variable of interest. Note 

that all notes in each experimental excerpt are counted in this section, while in the 

following section using transcriptions, only accented notes are counted. Experimental 

excerpts were constructed from transcriptions by isolating accented notes. 

I will adopt a sensitive statistical approach that will allow me to determine the relative 

role of each of these factors. 

N.B.: A statistical confidence level of 95% was used throughout this study. 

 

2.1 Experiment Design 

Fifteen music majors at UMass Amherst were asked to listen to eighteen short 

eighth-note-based rhythmic excerpts (seventeen with one duplicate) and to rate them for 

“complexity” on an integer scale from 1 to 7. A strict definition of “complexity” was not 

given; subjects were relied upon to provide their own, intuitive, definition. They were 

asked to listen to each excerpt twice before making a judgement. 

The excerpts used for this experiment were derived by selecting excerpts from 

solos by Louis Armstrong, Coleman Hawkins, Lester Young, Charlie Christian, and 

Charlie Parker, and isolating only dynamically accented notes. 
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The excerpts used in this experiment consisted of 20 measures of 4/4 time. In 

addition to the rhythms of interest, a quarter-note click track emphasizing the first beat of 

every measure was used. The click track ran for all 20 measures, while most rhythms of 

interest began after four pickup measures. Some rhythms began after just two or three 

pickup measures, while some began after five. Most rhythms ended in the 20th measure, 

but some ended earlier. An example stimulus excerpt is shown in Figure 7. 

Figure 7. Example of stimulus excerpt 

Only notes and rests evenly divisible by eighth-notes were used. The reason for 

this was that including other rhythms, such as triplet- or sixteenth-note-based rhythms, or 

rhythms involving ornamental straight-eighth-notes, would have required a longer 

experiment run time, which was already about twenty minutes. Furthermore, as will be 

described below, restricting the rhythms to eight-note multiples enables us to quantify 

syncopation more simply. It will be assumed that the conclusions obtained here, using 

excerpts divisible by eighth-notes, are generalizable to a broader range of rhythms. 
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Excerpts were generated using Finale. The woodblock sound on E5 was used for 

the rhythm of interest, and the clave sound was used to generate the quarter-note click 

track. Both of these sounds have sharp percussive attacks and no sustain, so that, for 

example, an eight-note followed by an eighth rest sounded exactly the same as a quarter-

note. Excerpts were played at 150 bpm, and swing eighth-notes were generated using 

quarter-note triplet-eighth-note triplet pairs. 

Entropy was the primary variable of interest in this study. In order to study the 

relationship of entropy to perceived complexity, however, it was necessary to consider 

other predictor variables as well. First and foremost, it was necessary to control for 

number of notes. 

Since the excerpts were roughly the same number of measures (µ = 16.06, σ = 

1.21, min = 13, max = 18), controlling for number of notes was similar to controlling for 

density of notes; it is not possible to decide a priori which quantity a listener would 

perceive. The importance of this dichotomy will be returned to in Section 3. The variation 

in excerpt length was the consequence of selecting excerpts from a collection of solos and 

selecting mainly 16-bar excerpts with one or possibly two pickup measures and 

sometimes ending early. 

Three ranges of entropy were crossed with three ranges of number (or density) of 

notes and for each of eight combinations, two excerpts were selected. One excerpt, 

however (high entropy, low number of notes), was also used for the combination high 

entropy, medium number of notes. Table 2 shows the ranges of entropy and number of 

notes. 
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Variable/Ranges Low Medium High 

Entropy 1.7 – 2.3 2.3 – 2.9 2.9 – 3.5 

Number of Notes 16 – 23 24 – 30 31 – 38 

Table 2. Ranges of entropy and number of notes used for selecting excerpts 

Note that for computational purposes, variables were treated as continuous; the 

ranges referred to here were used only for selecting excerpts. For some excerpts, entropy 

values were on the borderline between two ranges; this did not present a serious problem, 

since analysis used actual entropy values rather than entropy range. 

Next it was necessary to control for the interaction between rhythm and meter. 

This was done in two ways: by including periodicity as a quantity of interest, and by 

treating syncopation as a quantity of interest. 

To control for periodicity of the test rhythms –– or lack thereof -– I employed two 

autocorrelation-like variables I will call corr.4 and corr.8. They represent the number of 

inter-onset intervals (using the term loosely because they may not be between notes that 

are adjacent) of duration four or eight eighth-notes, normalized by number of notes. If 

there is a good deal of correlation at a distance of four or eight eighth notes – in other 

words, if the test rhythms are strongly tied to the underlying meter – these variables will 

indicate so.  

The formulas are presented below, where s is the “signal” (0 or 1) corresponding 

to a particular excerpt, indexed by eighth-note position in an excerpt n eighth-notes long5: 

 corr.4 = ∑ 𝑠𝑠(𝑛𝑛
𝑖𝑖=5 𝑖𝑖)𝑠𝑠(𝑖𝑖 − 4)/n Eq. 10(a) 

  corr.8 = ∑ 𝑠𝑠(𝑛𝑛
𝑖𝑖=9 𝑖𝑖)𝑠𝑠(𝑖𝑖 − 8) /n Eq. 10(b) 

 
5 Results were also calculated using n2 in the denominator instead of n. They were essentially unchanged. 
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Each of these sums reflect the overlap between the signal and a shifted version of the 

signal. Note that if we shift the signal by four eighth-notes, we can only evaluate the sum 

from the fifth member of the signal to its end, because the s(i–4) term precludes using 

anything before the fifth member of the signal. The last term in the sum will be s(n)*s(n–

4). No further terms enter into the sum because the signal has only n values. A similar 

argument holds for corr.8. 

 It is worth noting several things about corr.4 and corr.8. 

First and most importantly, while entropy does not depend directly on meter, it 

depends indirectly on meter via corr.4 and corr.8, since the prevalence of a given IOI – 

to be specific, an IOI of four or eight – lowers the entropy. The converse is not 

necessarily true: low entropy may indicate the prevalence of some particular IOI or IOIs, 

but they need not have values of four or eight. Of course, in this style of music, IOIs of 

four or eight are bound to be more common than any other IOIs, so in that limited sense 

the converse is true. 

Second, while two notes separated by four or eight eighth-notes may add to the 

sums in Eq. 4.2 (a) or (b) even if there are notes in between them, the normalizing factor 

n means that pairs of notes separated by four or eight eighth-notes without intervening 

notes contribute slightly more strongly to the sum. 

Finally, for low entropy excerpts, the most prevalent placement of notes separated 

by four eighth notes is on the strong beats one or three, without intervening notes. So for 

low-entropy excerpts, it is the prevalence of beats one and three that leads to high corr.4 

or corr.8, but low entropy. 



24 

I also evaluated the syncopation within each excerpt. To control for syncopation, I 

employed the metric of Longuet-Higgins and Lee (1984), described in Appendix A, 

divided by number of notes, to yield a variable I will call “LHL quotient” or “LHLQ.” 

This variable, by definition, is strongly dependent on meter. 

While Smith and Honing (2006) and Fitch and Rosenfeld (2007) have 

demonstrated the LHL metric to be an empirically meaningful quantity, the fact that a 

single sounded note can participate in multiple syncopations would seem to be counter-

intuitive (see Appendix A), particularly when a sounded note is followed by one or more 

measures of rest. In such a situation, a single note – say on the and of four – can be 

followed by syncopation totals of 7 (a large number in this context)6 for each measure of 

rest following the sounded note. In the excerpts used here, there are frequently one or two 

measures of rest, while in the excerpts used by Smith and Honing (who use the data of 

Shmulevich and Povel, 2000) and by Fitch and Rosenfeld, there do not appear to be any 

measures of rest. This should be addressed in a later study. 

Next, order effects were taken into account. (Note that eight different excerpt 

orderings were used). It was found that a relatively high complexity rating exerted an 

upward pressure on the following rating, while a relatively low complexity rating exerted 

a downward pressure on the following rating. This effect was significant in all models. It 

was, however, a small effect, and did not qualitatively affect the outcomes of the 

experiment. 

One final factor was taken into account: the jazz experience level of the 

participants. This was recorded as a binary variable indicating whether or not the subject 

 
6 This assumes that only eighth-note subdivisions are used, not sixteenth-note subdivisions. Including 
sixteenth-notes would not assuage the problem; in fact, it would make it worse. 
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was a jazz musician (undergraduate music majors at UMass Amherst study either jazz or 

classical music). It did not appear to make any difference in the analysis, and was 

therefore ignored. 

 

2.2 Experimental Results 

Data were analyzed using a mixed effects multivariate regression model7; the  

Satterthwaite approximation for effective degrees of freedom was used since the variance 

of the data was not known a priori. A “mixed effects” model was necessary because 

some factors were “fixed effects” (entropy, periodicity, syncopation, carryover effects, 

number/density of notes), while others were “random effects” (random intercept terms for 

subject and for excerpt). In general, a fixed effect is one whose specific values we are 

interested in, while a random effect is one that is chosen merely to be a representative of 

a larger population of values. Data were analyzed treating all factors of interest as 

continuous variables (this does not include experience level), and also treating the 

perceived complexity ratings as a continuous variable.8 

Four conditions for multiple regression were tested: independence, normality, 

homoschedasticity, and linearity. While the independence condition is not met since the 

model includes carryover effects (the influence of the previous complexity rating on the 

current complexity rating), this was judged not to be a problem by statisticians Anna Liu 

and Michael Lavine. 

 
7. On the advice of Anna Liu, personal communication 

8 The question of whether or not Likert–scale variables – such as the response variable in this experiment – 
can be treated as continuous variables is hotly debated, as a quick google search will indicate. There seems 
to be a consensus that a minimum of seven response choices (such as used in this experiment) is required 
for such a variable to be treated as continuous. However, personal communications from Anna Liu indicate 
that it is probably fine to treat the Likert–scale data as continuous for this experiment. This is a common 
assumption in the literature, and it is the assumption I adopt here. 
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 As a first step in analyzing the data, a backwards selection algorithm was used. 

This algorithm starts with a full model, and progresses in a step-wise fashion by deleting 

one variable at a time according to which change will yield the greatest reduction in the 

Akaiki Information Criterion until some prespecified stopping condition is reached (all of 

this was done using the ‘step’ command in the programming language R). The backward 

selection algorithm does not necessarily yield the absolute best model, but is merely a 

heuristic to identify a plausible model for further consideration. 

The Akaiki Information Criterion, and its relative the Bayesian Information 

Criterion, are both derived from the log likelihood function. The likelihood function 

treats observed variables as parameters and fit parameters as variables, and is maximized 

for a maximum-likelihood fit. Using the logarithm of the likelihood function is more 

convenient than using the likelihood function itself due to the very small numbers 

involved. 

Both the AIC and the BIC yield smaller values for better models. Both penalize a 

large number of parameters and favor simpler models. The AIC tends to be more liberal 

in terms of including parameters, while the BIC is more conservative. The Akaiki 

Information Criterion is defined by: 

 AIC = 2k – 2ln𝐿𝐿� Eq. 11 

where k is the number of parameters in the model and 𝐿𝐿� is the maximized likelihood 

function. The Bayesian Information Criterion is defined by: 

  BIC = k ln(n) – 2ln𝐿𝐿� Eq. 12 

where n is the sample size. 
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The typical mixed-effects multiple regression fit in the statistics programming 

language R uses the Restricted Maximum Likelihood (REML) of a model for a set of 

data. However, fitting data this way precludes the use of AIC to compare models exactly, 

including in the process of backwards selection, since the AIC is based upon maximizing 

the likelihood function rather than the “restricted” maximum likelihood. Furthermore, it 

complicates the process of testing for interaction effects. Therefore, I opt for a 

“maximum likelihood” method rather than the “restricted maximum likelihood” method 

here during model identification and interaction testing, then switch back to REML for 

reporting the final results. Choosing REML methods over maximum-likelihood methods 

in the final stage of calculations does not qualitatively affect final p-values. 

With this in mind, I return to the backward selection algorithm. Starting with a 

model including all of the fixed effects and random effects listed above, it identifies as a 

good model one that includes: corr.4, LHLQ, number of notes, and order effects as fixed 

effects, and random intercept terms for subject and excerpt. The coefficient 

corresponding to corr.4 is negative, indicating that perceived complexity has an inverse 

relationship to corr.4: decreasing periodicity increases complexity rating. The other 

coefficients are positive. This model will be called the long model. 

Since I am primarily interested in entropy, I also propose a model using entropy, 

number of notes, and order effects as fixed effects, and random intercept terms for subject 

and excerpt. This will be called the short model. 

Both the short model and the long model were tested for interactions between 

fixed effects. Interactions occur when the effect of one variable depends on the value of 

another. There are multiple ways of testing for interactions; the method I used employed 
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the ANOVA procedure to compare two models at a time, one being the model without 

interactions and the second cycling through all possible combinations of fixed effect 

pairs, triples, and (for the long model) quadruples. No significant interactions were found.  

Table 3 shows the AIC and BIC for the long model and the short model, as well 

as the R2 metric for both models (the Nakagawa R2 for mixed-effects models was used); 

lower values of the AIC and BIC indicate a better fit, while higher values of R2 indicate a 

better fit. The rule of thumb for the AIC and BIC is that a difference of 2.0 or less is 

insignificant, while differences of 10.0 or more are extreme. As Table 6 shows, the long 

model is better than the short model according to the AIC and BIC, while the short model 

is better than the long model according to the R2 metric. R2 values in the 0.5–0.6 range 

indicate robust models, particularly for studies involving human psychology and 

performance (online consensus). 

 

Model/Criterion AIC BIC R2 

Long Model 714.14 742.40 0.514 

Short Model 722.31 747.04 0.527 

Table 3. Goodness of fit comparisons using Akaike Information Criterion, Bayes 
Information Criterion, and R2 

 
P-values for the long model are shown in Table 4, and reveal that all included 

fixed effects are significant. This is not surprising, as we expect periodicity, syncopation, 

number of notes, and order effects to be reflected in complexity ratings. The p-values for 

the short model are shown in Table 5, and reveal that all included fixed effects are 

significant. This, too, is to be expected, as we expect entropy, number of notes, and order 
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effects to be significant. The conclusion is that the models based on lack of periodicity/ 

syncopation and on entropy are both interesting and informative models. 

 

Variable p Value 

Number of notes 2.83*10-5 

Corr.4 1.20*10-5 

LHLQ 0.0154 

Order effect 2.14*10-5 

Table 4. Description of long model 

Variable p Value 

Number of notes 0.000152 

Entropy 0.010499 

Order effect 3.62*10-5 

Table 5. Description of short model 

An issue that can adversely affect the interpretation of multiple regression results 

is “collinearity” or “multicollinearity”. This is a situation that obtains when one or more 

predictor variables can accurately be derived from one or more other predictor variables 

by linear combination. This is undesirable since in this situation, the coefficient 

estimates of the multiple regression may change erratically in response to small changes 

in the model or the data (Wikipedia). An easy way to test for multicollinearity is to use 

the so-called variance inflation factor. This represents the ratio of the variance as it 

occurs for each term in a model to what that variance would be in the case of perfect 

https://en.wikipedia.org/wiki/Regression_coefficient
https://en.wikipedia.org/wiki/Regression_coefficient
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independence between variables. VIFs greater than 2.5, 5.0, or 10.0 – depending on the 

analyst’s choice – reveal the presence of multicollinearity. 

Applying this technique to the models at hand, using thresholds as low as 2.5, 

revealed that multicollinearity is not a problem here. Calculating VIFs for the fixed 

effects in the “full” model, however (entropy, corr.4, corr.8, LHLQ, carryover effects, 

and random intercept terms for subject and excerpt) yields the following VIFs (Table 6): 

 

Variable Entropy corr.4 corr.8 LHLQ Number/Density 

of Notes 

Carryover 

Effects 

VIF 7.45 7.03 3.52 2.61 2.93 1.02 

Table 6. Variance inflation factors (VIFs) for full model  

Clearly, entropy and corr.4 exhibit collinearity, which is not surprising given that 

they exhibit strong negative correlation (r = -0.88). Note that entropy and corr.8 have a 

strong negative correlation, too (r = -0.84) but the V.I.F. for corr.8 is only 3.51. 

 

2.3 Discussion 

While it may appear that the models presented above are independent of one 

another, they may in fact be an example of “statistical mediation.” Statistical mediation 

happens when an independent variable “X” influences a dependent variable “Y” through 

a mediating variable “M.” In the current situation, X could be “entropy,” Y could be 

“perceived rhythmic complexity,” and M could be “corr.4.” 

This is supported by the fact that there is a strong negative correlation between 

entropy and corr.4 (–0.88), which is stronger than the correlation between entropy and 
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corr.8 (–0.84) or entropy and syncopation (0.35). It is also supported by the fact that the 

variance inflation factors for entropy and corr.4  are high (about 7.0) while those for 

corr.8 and syncopation are much lower (<3.5). 

Furthermore, strong evidence for statistical mediation comes from the following 

observation, found on the University of Virginia’s website: 

If a mediation effect exists, the effect of X on Y will disappear (or at least weaken) when 

M is included in the regression. The effect of X on Y goes through M. If the effect of X on 

Y completely disappears, M fully mediates between X and Y (full mediation). 

www.library.virginia.edu/data/articles/introduction-to-mediation-analysis 

Starting with the short model (entropy, num. notes, order effects, and random 

intercept terms for subject and excerpt), the p value for entropy is 0.000152. Adding 

corr.4 completely obscures this effect (p = 0.30764), showing that corr.4 completely 

mediates between entropy and perceived rhythmic complexity. 

Adding corr.8 instead of corr.4 results in a p value for entropy of 0.06013, thus 

demonstrating that corr.8 partially mediates between entropy and perceived complexity. 

Adding LHLQ, on the other hand, does not obscure the effect of entropy at all: p = 

0.000436. 

Finally, it is possible that mediation effects occur between corr.4 and corr.8. This 

is of secondary interest, however, and will not be pursued further. 

What all of this means is that for excerpts with high values of corr.4 or corr.8 

there are many IOIs of four or eight eighth-notes, and thus a low entropy, while for 

excerpts with a low value of corr.4 or corr.8, there is a more diverse distribution of IOIs 
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and thus a higher entropy. So it appears that this is a case of statistical mediation, which 

does not change the fact that entropy alone significantly affects complexity ratings. 

Overall, then, the experiment revealed that for rhythms comprised solely of 

eighth-notes and rests and their integer multiples, entropy differences are reflected in 

subjective rhythmic complexity ratings (though this is probably mediated by periodicity); 

that periodicity or the lack thereof and syncopation are reflected in complexity ratings; 

that the number of notes (when excerpt length is held roughly constant) is reflected in 

complexity ratings; and that carryover effects are reflected in complexity ratings. More 

work on the effects of jazz experience level may be called for. 

These results challenge the finding of Thul and Toussaint (2008) that findings 

based on the statistical properties of IOI histograms (e.g. entropy) do not predict human 

performance metrics. There could be several reasons for this. Perhaps the null result 

regarding human performance metrics reflects a fundamental difference between 

measuring human performance metrics and measuring subjective complexity ratings. 

Perhaps the null result discrepancy comes from the fact that Thul and Toussaint used 

sixteenth-note subdivisions in addition to eight-note subdivisions; this methodology may 

or may not be more accurate than using just eighth-note subdivisions. Or perhaps these 

are merely results that disagree with each other, calling for more work to determine 

which is correct. In any case, further studies are called for. 

In a future study, it would be interesting to study the carryover effects of actual 

independent variables (entropy, corr.4, corr.8, LHLQ, number/density of notes,). In this 

scenario one might expect a high entropy value, for example, to exert a downward 

pressure on the following rating, while a low entropy value might exert an upward 
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pressure on the following rating. In other words, having just heard a highly entropic 

excerpt, for example, a subject might hear the following excerpt as being less entropic by 

comparison. 

 

2.4 Conclusion 

In this experiment, fifteen music majors rated eighteenth rhythmic excerpts 

(seventeen with one duplicate) for complexity. Two models were used to describe the 

data well (R2 ≈ 0.52): one including entropy (calculated from inter-onset intervals 

between notes in each excerpt), number of notes, carryover effects, and random intercepts 

for subject and excerpt; and one including periodicity, syncopation, number of notes, 

carryover effects, and random intercepts for subject and excerpt. It is likely that the two 

models demonstrate statistical mediation, in which entropy influences periodicity (or lack 

thereof), and periodicity in turn influences perceived complexity. 

In this experiment, only rhythms divisible by eighth-notes were used. This was 

necessary because including a wider array of rhythmic subdivisions would have made the 

experiment’s run time too long. Another experiment including a wider array of rhythmic 

subdivisions will have to await another study. The results presented here, however, 

already suggest strongly that perceived rhythmic complexity depends on entropy, when 

entropy is calculated using probability distributions obtained from measuring IOI’s 

between dynamically accented notes in jazz solos. In the following chapters, it will be 

assumed that entropy is, indeed, perceptible. If it is not, however, it is interesting in its 

own right, as a signature of musical style. This will be demonstrated in the next section. 
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3 Computational Results 

 My main goal in this section is to understand whether entropy, on the whole, is a 

signature of musical style among the five musicians considered in this study. This is an 

interesting question because the results from Section 2 seem to indicate that entropy is an 

indicator of rhythmic complexity, though the transcribed solos analyzed here frequently 

contained a wider range of rhythmic subdivisions than those contained in the 

experimental excerpts. To be specific, they contained eighth-note and quarter-note 

triplets, sixteenth-notes, and ornamental straight-eighth-notes. Even if entropy is not an 

indicator of rhythmic complexity for this wider range of rhythmic subdivisions, however, 

the question of whether or not entropy is a signature of style is still an interesting one, if 

for no other reason than academic curiosity. 

 

3.1 Corpus of Transcribed Solos 

The computations described here are based upon a corpus of 88 transcriptions of 

solos by five great jazz musicians: Louis Armstrong (1901–1971), Coleman Hawkins 

(1904–1969), Lester Young (1909–1959), Charlie Christian (1916–1942), and Charlie 

Parker (1920–1955). Note that the birthdates of these musicians span the first two 

decades of the twentieth century. The transcriptions were done by the author, though the 

Omnibook was used as a starting point for the Charlie Parker transcriptions. 

Transcribed solos were converted to Excel files by evaluating the elapsed times, 

in eighth notes, from the beginnings of solos to the onset of accented notes. For some 

double-time solos, e.g. on ballads, elapsed times were sometimes evaluated in sixteenth 
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notes. Eighth-notes (or sixteenth-notes on some double-time solos) were assumed to be 

swung unless they were flagged as “straight.”  

 Efforts were made to select solos representative of each soloist’s different style 

periods, and to include chronologically even representations of each soloist’s oeuvre. For 

Armstrong, solos were included from his Hot Fives and Hot Sevens, from Louis 

Armstrong and His Savoy Ballroom Five, from Louis Armstrong and His Orchestra, and 

from Louis Armstrong and His All-Stars. (His early work with King Oliver was not 

included). Representatives of Armstrong’s trumpet solos and of his vocal work were 

included. For Hawkins, his work with Fletcher Henderson was represented, as was his 

famous recording of “Body and Soul” from 1939 (his work in Europe was not included), 

his tenure as a leader on 52nd St., his work with Thelonious Monk, and his later work with 

pianists Tommy Flanagan and Paul Bley. Lester Young’s work with Basie was 

represented, as was his work with Billie Holiday, his work as a leader both before and 

after his enlistment in the Army, and his late work with Jazz at the Philharmonic. Charlie 

Christian’s premature death resulted in a lack of discernible style periods; the years 

1939–41 were covered roughly equally. Finally, the solos of Parker, according to 

Kernfeld (1996), can be divided into his early style (pre-1944) and his mature style (post-

1943). Both periods are represented here. 

 All excerpts were in 4/4 time, sometimes articulated as 12/8 time, with a tempo 

range of 63 (Armstrong “What a Wonderful world”) to 280 bpm (Parker “Honeysuckle 

Rose” and “Crazeology”). 

The smallest subdivision used in the transcriptions was the sixteenth note (or in 

the case of double time solos, the thirty-second note). This subdivision was sufficient for 
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identifying accents in the solos transcribed. Efforts were made to accurately represent 

rhythmic anticipations and suspensions that approximate eighth-note rhythms, for 

example in Armstrong’s solos on “Stardust” or “What a Wonderful World.” Straight 

eighths were distinguished from swing eighths, and in some solos based on double time 

(e.g. Hawkins, “Wanderlust”), sixteenth notes were treated as swung notes, with some 

straight sixteenths. 

 The shortest excerpt was 12 bars with pick-ups (Parker, “Hootie Blues”), while 

the longest was 200 bars (Young, “Ad Lib Blues”). The question of minimum solo length 

is an important one, since as the number of bars tends toward zero, so must the excerpt’s 

entropy. For the time being, 12 bars were considered long enough to produce a 

meaningful entropy value. As will be discussed later, however, solo length will be 

accounted for by treating the number of accents as a covariate in the analysis of entropy’s 

dependence on musician. 

 Only dynamically accented notes were used in the calculations. Accented notes 

were used because they reflect a layer of structure superimposed by the soloist on the 

structure of the solo. Dynamically accented notes were used on the assumption that they 

are the easiest to perceive. In a future study, other kinds of accent might be included. 

 Joel Lester, quoted in John Roeder’s “A Calculus of Accent,” defines accent in 

terms of the music surrounding a given accent, specifically “the relative strength of a note 

or other musical event in relation to surrounding notes or events.” An archetypical series 

of accents, from Lester Young’s solo on “Blues For Greasy,” is shown in Figure 8 (this 

was seen earlier in Figure 1). A more complex example, from Coleman Hawkins’s solo 

on “Body and Soul,” is shown in Figure 9; here a phrase played mezzo piano is followed 
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by a phrase played mezzo forte containing an accent on the second beat of the second 

phrase. The first note of the second phrase is not considered to be an accent, even though 

it is louder than the preceding phrase. Two examples from the Louis Armstrong trumpet 

corpus illustrate how accents interact with register; this is of interest because of the strong 

dependence of loudness on register in trumpet music. In the first example, from his solo 

on Stardust, an ascending phrase lands on an accented note which is then repeated with 

accents (Figure 10). I perceive these notes as being accented even though there is a 

crescendo leading up to them. An example from “I Double Dare You,” by contrast, is in a 

moderately high register, but does not accent the highest note in the phrase (Figure 11). 

Finally, I discuss one of Armstrong’s vocal solos on “What a Wonderful World” (see 

Figure 17, later in the document). On the bridge, there are many repeated accented notes, 

but there are enough notes in the solo that are not accented to make the identification of 

accented notes meaningful. 

 Most of the eighth note pairs considered here are swing eighths, meaning that they 

can be grouped into long-short pairs starting on quarter-note beats. According to Collier 

and Collier (2002), for example, Armstrong sometimes employs eighth note pairs with a 

durational ratio of 1.6:1 (or 8:5). In many excerpts, however, Armstrong and other 

soloists employ a ratio of 2:1. 

 

Figure 8. A straightforward example of accents from Young, “Blues For Greasy” 
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Figure 9 An excerpt from Hawkins’s “Body and Soul” in which a change in dynamic 
levels does not cause an accent 

 

Figure 10. An excerpt from Armstrong’s “Stardust” in which a crescendo does not 
negate the perception of accents 

 

 

Figure 11. An excerpt from Armstrong’s “I Double Dare You” in which register does not 
solely determine accents 

 
A ratio of 2:1 creates a triplet feel, since it corresponds to a single quarter-note 

triplet followed by a single eighth-note triplet. This ratio implies a compound 12/8 meter, 

and the rhythm section often supports this; a prime example is one of Armstrong’s 

performances of “What a Wonderful World,” from 1967, transcribed in Figure 17. The 

piano plays chords in 12/8 time, and this provides the backbone upon which Armstrong’s 

solo is built. 

For some excerpts, it must be specified whether the swing ratio is 2:1 or not in 

order to calculate entropy from the transcribed solos, since if it is, the IOIs involving 

swing eighth notes are equivalent to rhythms involving triplets, thus potentially reducing 

the total number of distinct IOIs in the excerpt. This causes a potential problem since 

there is theoretically a discontinuity in entropy as a function of swing ratio: as 2:1 is 

approached, the entropy is calculated according to the formula for non-triplet swing 



39 

eighth notes, but this jumps to the triplet version of the entropy when 2:1 is reached. For 

other excerpts, this does not matter because there are no accents on the third triplet of any 

quarter-note beat. 

For ratios other than 2:1, the exact ratio is unimportant; what matters is that the 

difference between groups of eighth note beats starting on a “long” eighth note rather 

than a “short” eighth note is taken into account in the analysis. This is true for groups 

consisting of odd numbers of eighth notes. For example, a group of three eighth notes 

starting on a long eighth note beat would have a duration of L+S+L, while the duration of 

three eight notes starting on a short eighth note beat would be S+L+S, where S and L 

stand for the (unequal) durations of the short and long eighth note beats respectively. 

To facilitate analysis, only excerpts in which the swing ratio is obviously 2:1 or in 

which the entropy does not depend on the swing ratio were included in the corpus. This 

excludes excerpts in which the swing ratio is difficult to ascertain and in which the 

entropy depends on whether or not the swing ratio is 2:1. 

One solo had to be rejected because it was constructed almost entirely of straight 

or almost straight eighth notes: Charlie Parker’s solo on “KoKo.” Solos such as these 

cannot be included in the corpus, because the decision of whether to treat them as swing 

or straight in calculating entropy has a marked effect on the outcome (on the order of 

10% for “KoKo”). 

For a chart containing musician names, excerpt names, recording dates, a binary 

variable called “TS” for “triplet swing,” which indicates whether or not an excerpt 

exhibited a 2:1 swing ratio AND the entropy depended on whether or not the swing ratio 
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was treated as 2:1, number of distinct IOIs, number of accents, and entropy, see 

Appendix B at the end of this paper. 

 

3.2 Methods 

The primary tool employed for the task of determining whether or not entropy 

depends on musician is that of estimated marginal means, or EMMs. EMMs allow us to 

study the dependence of a continuous “response” variable (in this case, entropy), on a 

single discrete “factor” (in this case, musician), in the presence of continuous 

“covariates” which may depend on the factor. P values for each pairwise combination of 

musicians reveal whether or not entropy depends on musician. EMMs are calculated from 

multiple linear regression models; four conditions for regression were verified: 

independence, normality, homoschedasticity, and linearity.  

As covariates to include in this model, I selected number of distinct IOIs and 

number of accents. Not only are these intuitive choices – since both of them could be 

reflected in entropy values and both of them could depend on musician in the corpus used 

here – they also sidestep the issue of normalization. Rather than normalize by maximum 

entropy for a given number of IOIs, I use number of IOIs as a covariate. Rather than 

normalize by sample length, I use number of accents as a covariate. This is also a 

convenient way to sidestep the issue of sample size (see below). 

To compare different musicians in terms of entropy, the present study takes a 

different approach from that used in previous studies (Youngblood 1958; Knopoff and 

Hutchinson 1981, 1983; Snyder 1990): rather than grouping data together by composer, 

different excerpts are evaluated for entropy separately, and the estimated marginal means 
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technique lets us evaluate differences in entropy for significance between musicians, 

obviating the need for a minimum number of points for each musician (though a large 

number of points spread out over the excerpts was still used – see below). 

 In order to justify the inclusion of number of distinct IOI’s and number of accents 

as covariates, I turn to a graphical technique called the “added variable plot.” Added 

variable plots reveal whether or not it makes sense to add an independent variable to a 

linear model. First, one constructs two models: y ~ x1 + x2 + … + xn and xn+1 ~ x1 + x2 + 

… + xn, where y is the dependent variable, x1 … xn are the independent variables already 

included in the model, and xn+1 is the independent variable to be tested for addition. One 

then calculates the residuals of the two models and plots them against each other. A 

straight line indicates that the variable xn+1 should be added to the model. 

In this case, I begin by considering the addition of “number of distinct IOIs” to 

the single variable “musician”; the corresponding plot, Figure 12, shows that the variable 

should be added. The same procedure is used to show that “number of accents” should be 

added to “musician” and “number of distinct IOIs” (Figure 13). According to statistician 

Michael Lavine (personal communication), these are “textbook examples.” 

Having selected number of distinct IOIs and number of accents as covariates 

based on our intuition about the variables (other than musician) upon which entropy 

should depend, and based on the added variable plots, I use another graphical technique, 

the residuals vs. fitted values plot, to test whether or not the model is a good fit to the 

data, and whether or not more variables should be added. A complete, well-fitting model 

is indicated by a random scattering of points, showing that there is no systematic error in 

the data. The residuals vs. fitted values plot for the model entropy ~ musician + number 
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of IOIs + number of accents is shown in Figure 14; it reveals that the model is a good fit 

to the data, and that adding more variables might result in overfitting. 

 

Figure 12. Added Variable Plot for number of IOIs 
 

 

Figure 13. Added Variable Plot for number of accents 
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Figure 14. Residuals vs. Fitted Values Plot for two-covariate model 
. 

Recall that in the experimental portion of this paper, I raised the issue of 

multicollinearity, and found that the variables used there were not collinear. In the 

present scenario, it is again desirable to verify the lack of collinearity in the data. Here, I 

use generalized variance inflation factors due to the fact that the variable musician has 

four degrees of freedom. After calculating the GVIF’s and transforming them using the 

formula GVIF0.5ν where ν is the number of degrees of freedom, it can be concluded that 

there is no collinearity. 

In a situation such as this, when comparisons are made between multiple pairwise 

combinations, p values must be adjusted to account for the multiple comparisons. That is 

because if an individual test has a 0.95 confidence level, several simultaneous tests will 

have a lower confidence level: increasing the number of tests creates the opportunity for 

more Type I errors. Increasing the individual p values corrects this problem. The simplest 
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and most conservative way to do this is to use the Bonferroni correction, which 

multiplies each pairwise p value by the number of pairwise combinations. So in the 

present scenario, with five musicians, there are 5 *4/2 = 10 pairwise combinations, and we 

must multiply each unadjusted p value by 10. (Resultant p values greater than one  are 

automatically assigned the value 1.0). 

Here I digress for a moment to describe an anomaly in the data. In his solo on I 

Never Knew, Armstrong uncharacteristically plays two “clams,” in measures 9 and 10, on 

beats four and one respectively. To examine the effects of these notes on entropy, I 

treated them four ways: neither as an accent; the first of the two as an accent; the second 

of the two as an accent; and both as accents. The net effect on entropy was less than five 

percent, the effect on num_IOI’s was at most about eight percent (one out of twelve or 

thirteen), and the effect on num_accents was less than six percent (one or two in the 

range 33–35). None of these differences manifested as appreciable changes in p values 

for the models discussed here, but to be as accurate as possible, p values – as well as 

R2values - were averaged across each of the four possible treatments of the clams9,10. 

 One final topic pertaining to the analysis of this data must be addressed, as in the 

experimental case: interactions. As in the experimental case, this is handled by 

performing an analysis of variance on pairs of models having no interaction terms or 

having one or more interaction terms. This revealed no interactions. 

 

3.3 Results 

 
9 Note that the quantity in question is not perceptual, but intentional: what did Louis Armstrong intend to 
play? We can never know, so we average over the four possibilities. 
10 The added variable plots displayed above had almost no perceptible dependence on disposition of the 
clams. 
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Table 7 shows the pairwise p values resulting from applying the estimated 

marginal means technique; in each pair, the lower value is listed first. I find that while 

Armstrong, Christian, Hawkins, and Parker are all less entropic than Young, the 

difference between Hawkins and Young is not statistically significant since the p value is 

greater than 0.05. In particular, the p values for Armstrong/Young, Christian/Young, 

Hawkins/Young, and Parker/Young are 0.0224, 0.0239, 0.2404, and 0.0011. Pairs not 

involving Young all have p values of 1.0, which occurs whenever multiplying a raw p 

value by the Bonferroni correction results in a number greater than or equal to one. 

The adjusted R2 metric for this model was high: 0.7896. This indicates that most 

of the variation in entropy is due to the independent variables, rather than to noise. 

 

Musician Pair p Value 

Armstrong/Young 0.0224 

Christian/Young 0.0239 

Hawkins/Young 0.2404 

Parker/Young 0.0011 

 
Table 7. Pairwise comparisons using the EMM procedure; comparisons not listed have p 

values of 1.0 
 

Care must be taken in evaluating these results to take researcher error into 

account, since in a manually transcribed corpus of this size (6,299 accented notes; 

20,000–30,000 notes total) there are bound to be errors. This is discussed in detail in 

Appendix C; the upshot is that random error probably does not qualitatively affect the 

above-reported p values, but there is a possibility that the Christian/Young comparisons 
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should be reported as only marginally significant (p ≈ 0.05–0.06), or even possibly 

insignificant. The pairwise comparisons between Armstrong and Young and Parker and 

Young, however, are secure. 

I can take the analysis one step further by identifying outliers in the data. This is 

done by fitting the data with a multiple regression model and calculating residuals; points 

corresponding to residuals that are greater in absolute value than twice the standard 

deviation of the residuals are considered to be outliers. Using this method, five outliers 

were identified, including, notably, two early Charlie Parker excerpts, “Moten Swing” 

and “Honeysuckle Rose.” 

In light of the above discussion regarding Armstrong’s solo on “I Never Knew,” 

the identification of outliers was carried out for all four dispositions of the accented/non–

accented clams. Results were consistent for all four treatments of the problematic notes. 

Musician Pair p Value 

Armstrong/Young 0.00035 

Christian/Young 0.0011 

Hawkins/Young 0.2632 

Parker/Young 0.0006 

Armstrong/Hawkins 0.4990 

Christian/Hawkins 0.6673 

 
Table 8. Pairwise comparisons using the EMM procedure, data with outliers deleted. 

Pairs not shown have p values of 1.0 
 

Pairwise comparisons using the modified data are shown in Table 8. Removing 

outliers did not qualitatively change the results, but rather intensified the contrasts 
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between Armstrong and Young, Christian and Young, and Parker and Young. P values 

were 0.0004, 0.0011, and 0.0006, respectively. The difference between Hawkins and 

Young was still not significant (p = 0.2632). All other p values were 1.0 with the 

exception of Armstrong/Hawkins (p = 0.4990) and Christian/Hawkins (0.6673). The 

adjusted R2 value for the data with outliers deleted was 0.818, even higher than that with 

outliers included. (Note that checking for interactions in the data with outliers excluded 

indicated that it was not important to include interaction terms). 

 

3.4 Debunking Hypotheses About Chronological Trends 

 Next I explore a way of parsing the data on Armstrong into early and late periods 

suggested by Barry Kernfeld (1996). Kernfeld posits that Armstrong’s work from before 

1936 is qualitatively different from his work from after 1936; he states that after 1936, 

Armstrong basically pandered to the masses, while his earlier work was more complex. I 

tested this hypothesis in terms of entropy using the EMM procedure, and found that there 

was no significant difference between the two periods (p = 0.221). Regarding Kernfield’s 

assertion that Armstrong’s later work pandered to the masses, one must only listen to his 

popular recording of “What a Wonderful World” (1967) to see that Armstrong could gain 

the widespread adulation of fans without sacrificing musical complexity (entropy of 

3.877). 

 Again using the EMM technique, I explore the commonly held belief that Lester 

Young’s playing was altered by his stint in the Army, and find that entropy does not 

reveal a difference between his pre- and post-Army solos (p = 0.229). 
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3.5 Hawkins vs. Parker 

The fact that the pairwise comparison between Hawkins and Parker ranks 

Hawkins above Parker (though not significantly) merits some attention, given that Parker 

is usually considered to be more rhythmically complex – and presumably more entropic – 

than Hawkins. 

For example, according to Scott DeVeaux in The Birth of Bebop, Hawkins was 

known for his rhythmic predictability: 

His notorious tendency toward rhythmic uniformity – a steady stream of eighth notes … 

later caricatured by one writer as a “machine-gun style” – was only exacerbated by his 

ongoing project of crowding as much of the underlying harmony as possible into his 

improvised line. 

DeVeaux 1997, 85 

Martin Williams confirms this observation: 

Rhythmically, [Hawkins] continued to live in the early ‘thirties – but, again, with more 

regular accents than many players of that period. 

Williams 1993, 77 

Parker, on the other hand, was known for his rhythmic adventurousness: 

… the pattern of accents in a Charlie Parker line is in a constant state of flux – falling 

sometimes on the strong beats of the measure, but also (and quite unpredictably) on 

“weak beats” (beats 2 and 4) or on the weak half of the eighth note pair. 

DeVeaux 1997, 264 

If entropy does not reflect the predictability of Hawkins and unpredictability of 

Parker we are led to expect from conventional wisdom, what accounts for these 
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expectations? One possibility is that Hawkins uses more dynamical accents than Parker, 

perhaps creating an expectation of accents. This theory is supported by the fact that the 

average dynamical accent density (number of dynamical accents divided by excerpt 

length) for a limited corpus of thirteen Hawkins excerpts is 1.74 while for a corpus of 

fifteen Parker excerpts it is 1.3611. A two-sample t-test yields a p value of 0.0046; so the 

difference is statistically significant. 

 I can go one step further, and obtain results based not only on dynamical accents 

but on contour accents as well12. Contour accents occur when the melody changes 

direction; only changes in direction prepared by two intervals moving in the same 

direction were counted. This is a reasonable thing to do, given that, to my ears, Parker’s 

lines owe much of their interest to changes in direction. For example, the lick shown in 

Figure 15 changes direction eight times in the space of just two bars. This lick appears in 

“Au Privave,” “Billie’s Bounce,” and “Now’s The Time.” (To be fair, this lick also 

appears once in a Hawkins solo, but not frequently as in the Parker corpus). Using the 

same samples as those used for the dynamical accent calculations13, I find that the 

average contour accent density for Hawkins is 1.03, while for Parker it is 1.34. Again 

using a two-sample t-test, I find that p = 0.00078. Thus, there is a significant difference in 

contour accent density between Parker and Hawkins, perhaps creating the expectation of 

unpredictability, unlike the expectation created by greater density of dynamical accents. 

 
11 The distribution of dynamical accents for a corpus of sixteen Parker excerpts was found not to be normal, 
a requirement for using the two-sample t test used here. Deleting a single excerpt (“Hootie Blues”) resulted 
in a normal distribution. 
12For more on contour theory, see Deutsch (1972), Dowling (1978), Edworthy(1985), Friedmann (1985), 
Polansky (1996), Quinn (1999), and Schmuckler (1999). 
13Including or excluding “Hootie’s Blues” did not affect the normality of the contour accent sample, so it 
was included in the two-sample t test. 
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Figure 15. Charlie Parker lick changing direction eight times in two bars 

 

3.6 Number/Density of Notes 

 Recall from Section 2 that entropy, to the extent that we can assume it affects the 

perception of rhythmic complexity for rhythms that are not eighth-note-based, is not the 

only factor affecting the perception of rhythmic complexity. Periodicity (or lack thereof), 

syncopation, and number of notes (for an experiment involving approximately equal 

excerpt lengths), for eighth-note-based rhythms, are all factors of interest. Recall that in 

Section 2 I pointed out that it cannot be decided a priori whether listeners respond to note 

number or note density in formulating complexity ratings. 

Note that in designing the estimated marginal means model for entropy, accent 

number was used as a covariate rather than accent density because I desired a variable 

that reflected length of excerpt and because the added variable plots clearly indicated that 

it made sense to add number of accents to the independent variable “musician” and the 

covariate “number of distinct IOIs”. 

 If complexity depends on entropy, and entropy depends on number count, then we 

might naively expect complexity to depend on number count, too. To resolve this 

conundrum, I use the variance inflation factor (V.I.F.) introduced in Section 2. Recall that 

in the model complexity ~ entropy + number/density of notes + order effects + random 

intercept for subject and excerpt, the V.I.F. tests for multicollinearity in the predictor 

variables, and finds none. Entropy and number/density of notes (which are approximately 
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the same in the experimental setup used here) tell us different things about the data. We 

need not concern ourselves with the propagation of the choice between number count and 

number density from the entropy calculation to the perceived complexity calculation. In 

other words, we don’t need to know what the exact relationship is between number 

(density or count) and entropy in the perceived complexity calculation. All we need to 

know is revealed by the estimated marginal means procedure for computational results 

and the linear mixed effects regression procedure for experimental results. 

It should be noted, however, that the absence of triplet- or sixteenth-note-based 

rhythms or ornamental straight-eighth-notes in the experimental excerpts may impact the 

application of note density to any theorizing about how note density affects the 

perception of rhythmic complexity. For example, a subsequent experiment might indicate 

that quarter-note triplets impact one’s perception of rhythmic complexity more, or at least 

differently, than eighth-notes do. 

3.7 Conclusion 

 In this section I tested the hypothesis that computed entropy depends on musician 

in a corpus of 88 solos by Armstrong, Hawkins, Young, Christian, and Parker using the 

estimated marginal means technique with number of IOIs and number of accents as 

covariates. Using this technique obviated the need for normalization or minimum sample 

size. Furthermore, the added variable plot technique strongly supported the inclusion of 

these covariates. 

 Results showed that solos by Young were significantly more entropic than solos 

by Armstrong or Parker, and probably more entropic than solos by Christian (the 

presence of researcher error made it impossible to ascertain the results regarding 
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Christian for sure). Furthermore, two hypotheses regarding chronological trends were 

shown not to be supported by entropy calculations. 

 The lack of contrast in entropy between Hawkins and Parker was explained as 

probably being due to the greater dynamic accent density in the solos of Hawkins, and the 

greater contour accent density in the solos of Parker. 

 Finally, it was shown that it is not necessarily to know whether listeners respond 

to note number or note density in order to understand the results found here. 

 

4 Entropy and Melodic Embellishment 

 A vital part of the jazz tradition is the embellishment of standard songs to become 

jazz. Examples can be found in the heads corresponding to the improvisations in the 

corpus used here, such as Young’s renditions of “All of Me” and “Tea For Two.” In other 

cases, such as Hawkins’s famous 1939 rendition of “Body and Soul” (see chapter 6), or 

Armstrong’s renditions of “Stardust” (1931) and “What a Wonderful World” (1967), the 

embellishments are so extreme as to render the heads part of the solos themselves. 

Melodic embellishment is one of the four types of improvisation enumerated by 

Henry Martin in his study of thematic improvisation in Charlie Parker’s playing (1996, 

34), based on classifications devised by Kernfeld and Hodier – namely, paraphrase 

improvisation14. The question of when a paraphrase becomes a freer type of 

improvisation is difficult to answer; apparently, the dividing line is based purely on 

intuition. While this answer is somewhat unsatisfactory, it is also inevitable: musicians 

 
14 The other three types are chorus phrase improvisation (based on the form and harmonic structure of the 
head only), motivic improvisation (based on motives from the head), and formulaic improvisation (based 
on formulas used by the soloist throughout his or her oeuvre). 
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often reference the melody, to greater or lesser degrees, during improvisation. For 

example, Hawkins begins his solo on “Epistrophy” by quoting the melody verbatim for 

eight bars, before developing the rhythmic motives of which the head is composed and 

producing a varied and fascinating solo. In the present context, melodic renditions that 

substantially alter the melody have been considered to be solos or parts of solos, and have 

contributed to the evaluation of entropy, while those that do not substantially alter the 

melody have not been considered part of an excerpt to be evaluated for entropy. Charlie 

Parker’s rhythmically complex heads were not included in calculations of entropy. 

Here I examine several examples of melodic embellishment, namely, embellished 

versions of “Tea For Two,” “All of Me,” and” What a Wonderful World,” by Lester 

Young, Doris Day, Ella Fitzgerald, Frank Sinatra, and Louis Armstrong. 

“Tea For Two,” as written, has very little rhythmic variety. In fact, almost three 

quarters of the song follow either the template shown in Figure 16 (a), or its close 

rhythmic relative, Figure 16 (b). The rest of the song consists of whole notes. In all cases, 

the implied accents are purely metrical, and fall on beats one and three. Not surprisingly, 

the calculated entropy for this song as written is very low: 0.32, to be exact. 

I examined three renditions of this melody, two by singers – Doris Day and Ella 

Fitzgerald – and one by Lester Young. Somewhat surprisingly, at least in the case of 

Doris Day, for whom we might expect lower rhythmic unpredictability than for 

Fitzgerald or Young, the calculated entropies for these three renditions of the song were 

quite similar: 2.71 for Fitzgerald, 2.75 for Day, and 2.90 for Young. 
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Figure 16. Rhythms upon which “Tea For Two” is based 

“All of Me” has an even lower entropy: every bar begins with an accented note, 

and accents do not fall on any beats other than downbeats. Thus, the entropy is, in fact, 

zero! The entropies corresponding to versions by Frank Sinatra, Ella Fitzgerald, and 

Lester Young, on the other hand, occupy a narrow band of +/– 1.8% centered on H 

=3.54: Sinatra has H = 3.477, Fitzgerald H = 3.595, and Young H = 3.606. The renditions 

by Sinatra and Fitzgerald were taken to be the first of two melody choruses, in order to 

facilitate comparison with the Young melody chorus; had the second melody choruses 

been used, the entropies most likely would have been greater.  

Note, too, that Sinatra employs a subtle behind-the-beat phrasing, not enough to 

warrant shifting any rhythms by a sixteenth note, as Louis Armstrong is wont to do, e.g. 

in “What a Wonderful World” m. 23, where beat one is shifted to the second sixteenth 

note of beat one, but just enough to be perceptible (Figure 17).  

 Finally, I compare one of Louis Armstrong’s 1967 recordings of the 

aforementioned “What a Wonderful World” (Figure 17) to the sheet music version. I find 

that, for the sheet music, H = 1.517, and for the Armstrong recording, H = 3.877. 
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Figure 17. Transcription of one of Louis  Armstrong’s version of “What a Wonderful 
World”  
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5 Mutual Information and Soloist-Accompanist Interaction 

 Here I use the concept of mutual information, as defined previously, to analyze 

the interactions between Charlie Parker and some of the pianists who accompanied him. 

This is a sensible approach, since we expect the placement of chords by the accompanist 

to reflect the placement of accents by the soloist and vice-versa; mutual information 

appears to be the perfect tool to represent these interactions. 

 There are several possible ways to implement the calculation of mutual 

information for strings of saxophone accents and their corresponding chord onsets. For 

simplicity, I restrict myself to the case in which IOI’s between saxophone accents and 

between chord onsets are subdivided solely by eighth notes; that is, I omit solos in which 

triplet, sixteenth note, or straight-eighth-note subdivisions are used in either the soloist or 

accompanist parts. 

 Given this restriction, I subdivide the solo accent and chord onset streams into 

half-measure – that is, four eighth note – groups. Next, I label each group – in both the 

soloist and accompanist parts – with a number from 1 to 16, according to the 16 possible 

combinations of four eighth notes or eighth note rests. (There are two possibilities for 

each of the four positions in each group, thus 2*2*2*2 = 16). I calculate the joint 

distribution by counting the number of occurrences of each pair of labels (in the soloist 

and accompanist parts) and dividing by the number of half-measure groups. I calculate 

the marginal distributions by simply counting the number of occurrences of each label 

within first the soloist, then the accompaniment parts, and dividing by the number of half-

measure groups. Thus I am able to calculate MI scores using Equation 9. 
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 I begin by considering comping rhythms that result in low MI scores. For an 

extreme but not far-fetched example, consider comping rhythms with zero entropy. When 

either distribution in a mutual information calculation has zero entropy, the resulting 

mutual information is zero as well, since knowledge of one variable has no effect on the 

knowledge of the other. 

 Recall that zero entropy rhythms have just one IOI value. So, for example, whole 

notes in the accompaniment part starting on beat one of every measure would yield zero 

MI, as would quarter notes on every beat. While these rhythms are unlikely to appear in a 

jazz accompaniment, eighth notes on the “and” of two and the “and” of four can 

frequently be found in the playing of pianist Red Garland; this, too, would yield zero MI. 

 Next consider a more complex but still simplistic comping rhythm: the previously 

discussed “Charleston” rhythm (see Figure 6). Here the MI scores are non-zero, but still 

low – as compared to the MI scores obtained using the actual comping rhythms (see 

Table 9), by a factor  ranging from 2.63 to 22.65. Thus, as expected, MI reflects to a 

certain extent the interaction between soloist and accompanist. 

 Next I calculate MI scores using randomly generated comping rhythms with the 

same number of chords as in the actual rhythm, and found that, with one exception, they 

were higher than the scores calculated using the actual comping rhythms. Factors ranged 

from 0.98 to 2.0. This makes sense since a randomly generated accompaniment would 

not contain many repeated segments, so knowledge of one’s place in the accompaniment 

would yield a great deal of information about one’s place in the solo. 
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Title MI actual 
MI 
Charleston MI Random actual/Charleston random/actual 

KoKo 0.07 0.03 0.15 2.63 2.00 
Bloomdido 0.25 0.05 0.28 5.49 1.12 
Dewey Square 0.33 0.12 0.53 2.72 1.61 
Donna Lee 0.34 0.04 0.34 9.08 0.98 
Yardbird Suite 0.37 0.10 0.52 3.87 1.38 
Crazeology 0.40 0.09 0.43 4.46 1.08 
Cheryl 0.44 0.06 0.50 7.49 1.14 
Ornithology 0.50 0.02 0.61 27.65 1.21 
Bongo Beep 0.59 0.19 0.73 3.06 1.23 
Au Privave 0.63 0.08 0.69 7.87 1.09 

  

Table 9. Mutual Information for ten Parker excerpts: actual, calculated using a 
Charleston comping rhythm, and calculated using a random comping rhythm. Ratios of 

actual MI to MI calculated using Charleston rhythm, MI calculated using random 
comping rhythm to actual MI. 

 

 Finally, I point out a possible reason for the MI score for “KoKo” (recorded 

11/26/1945) being lower than the other MI scores. The original pianist booked for this 

recording session was Bud Powell, but he had to cancel at the last minute; as a 

replacement, the little known pianist Argonne Thornton (who later changed his name to 

Sadik Hakim) was brought in. There is disagreement as to whether it was Thornton who 

played piano on “KoKo,” or the trumpeter Dizzy Gillespie filling in on his second 

instrument. It is unlikely that either of these accompanists would have possessed the 

pianistic agility displayed by any of the other accompanists represented here (Duke 

Jordan, Al Haig, Dodo Marmarosa, Bud Powell, Thelonious Monk, or Walter Bishop Jr.). 

Thus the low MI score; note, too, that the ratio of actual MI to Charleston MI is the 

lowest of the ten solos evaluated. So this is an important result. 

 Overall, then, mutual information appears to be a useful measure of the 

interaction between soloist and accompanist. 
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6 Conclusion 

 Within roughly ten years of its founding as a discipline, information theory had 

been applied to music by several authors. One reason for this is surely that the formula 

for Shannon entropy – the central concept of information theory – is simple, and can be 

used with any random variable described by a known probability distribution. Another, 

more enlightening, reason is provided by Meyer (1957), who posits that, in music, the 

phenomenon of expectation, specifically thwarted expectation, correlates with both 

information and musical meaning. 

The present work explored the relationship of entropy, and of the related concept 

of mutual information, to jazz rhythm in several ways, while making a brief foray into the 

study of rhythmic periodicity and syncopation as they pertain to the perception of 

rhythmic complexity. 

First of all, it demonstrated that entropy derived from IOIs between accented 

notes in jazz solos is a significant factor in the perception of rhythmic complexity for jazz 

rhythms constructed solely of multiples of eighth-notes and eighth-note rests. This 

conclusion was reached by means of an experiment that asked fifteen music majors to 

rank eighteen short rhythmic excerpts for complexity on a scale from one to seven. 

Results were analyzed using a mixed-effects multiple regression model with the 

Satterthwaite approximation. Multiple predictor variables were used, in addition to 

entropy: number of notes (which was roughly the same as note density because excerpts 

were approximately the same length), two variables quantifying the periodicity of test 

rhythms (or the lack thereof), syncopation, order effects (in other words, the effects of 

listening to the experimental excerpts in different orders), and jazz experience level. In 
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the course of identifying a model that included entropy, number of notes, and excerpt 

order as significant factors, I also identified a model that included lack of periodicity, 

syncopation, number of notes, and order effects as significant factors in the perception of 

rhythmic complexity. It is likely that entropy was mediated by periodicity in its effect on 

rhythmic complexity ratings. 

Next, using a corpus of 88 transcribed solos by Louis Armstrong, Coleman 

Hawkins, Lester Young, Charlie Christian, and Charlie Parker, I demonstrated that solos 

by Young are more entropic than those by Armstrong, Parker, and probably Christian, but 

not Hawkins. I arrived at this conclusion by isolating dynamical accented notes and 

calculating probability distributions based on the inter-onset intervals between accented 

notes, calculating the entropy of each excerpt, and using the estimated marginal means 

technique with the Bonferroni correction to make pairwise comparisons between 

musicians. Two covariates were used in this calculation: number of distinct IOIs and 

number of accents. The utility of these choices was confirmed using the added variable 

plot technique; including these covariates obviated the need for normalizing the 

computed entropies or insisting on minimum sample sizes. 

Two commonly received notions about the solos of Louis Armstrong and Lester 

Young were rebuked using the estimated marginal means technique as applied to entropy. 

The lack of difference in entropy between Parker and Hawkins was explained by the 

greater dynamic accent density in the solos of Hawkins and the greater contour accent 

density in Parker. Finally, it was shown that it is not necessary to know whether listeners 

respond to note number or note density in order to understand the results obtained here. 
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The phenomenon of melodic embellishment, central to jazz, was explored using 

entropy. Embellished versions of standard songs were uniformly found to have higher 

entropies than their sheet-music counterparts. 

Mutual information was used to study the interaction between Parker and his 

piano accompanists in a limited corpus of ten transcribed solos. Mutual information 

between Parker and his accompanists was found to be greater than that between Parker 

and a repeating Charleston rhythm accompaniment, and less than that between Parker and 

a random accompaniment. The latter result makes sense because knowledge of one’s 

place in a random accompaniment yields a high amount of information about one’s place 

in the solo. The lowest mutual information value and lowest ratio of mutual information 

between Parker and his accompanist to the mutual information between Parker and a 

Charleston accompaniment occurs on “KoKo”; this may be due to the fact that the 

accompanist on the date, either Argonne Thornton (Sadik Hakim) or Dizzy Gillespie, was 

probably less pianistically agile than Parker’s usual accompanists. 

Thus, this research has indicated that entropy is probably a significant factor in 

the perception of rhythmic complexity, that lack of periodicity probably mediates 

between entropy and perceived complexity, that entropy depends on musician in a corpus 

of 88 solos by five great jazz musicians, that entropy is a useful tool for understanding 

melodic embellishment, and that mutual information is a useful tool for studying the 

interaction between soloist and accompanist. 

It points the way toward at least four avenues for future exploration. 
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First and foremost, this research calls for experimental studies of entropy as a 

significant factor in the perception of rhythmic complexity for a more general class of 

rhythms, those including, triplets, sixteenth notes, and ornamental straight eighths. It is 

possible that the conclusions reached in the present study might be changed in a more 

general experimental context. For example, the presence or absence of triplets, sixteenth 

notes and ornamental straight eighths might overwhelm the effects of entropy on 

perceived rhythmic complexity. Or the effects of number or density of notes on 

complexity might interact with the types of rhythm included: perhaps the number of 

quarter-note triplets might have a stronger effect on perceived rhythmic complexity than 

the number of eighth-notes alone. 

 This research calls for studying carryover effects in such a way as to isolate the 

effects of predictor variables on subsequent complexity ratings. It seems intuitive that an 

excerpt with high entropy followed by an excerpt with low entropy might artificially 

deflate the subject’s reaction to the second excerpt. It is unlikely, however, that this 

would significantly change the experimental results obtained here, if the negligible 

magnitude of the carryover effects isolated here is any indication. 

It calls for computational research with more excerpts and more musicians. An 

equal number of excerpts should be transcribed for all musicians, and this should be as 

high as possible. And adding other musicians to the solos might help identify what 

exactly the factors are that lead to low or high entropy as it was here defined. Would 

Lester Young’s solos be more or less entropic than John Coltrane’s? Or Benny 

Goodman’s? An alternative to transcribing more solos would be to explore extant 



63 

transcriptions of jazz solos available online. This might be an efficient way to expand the 

corpus. 

And finally, it calls for corpora that are larger and include musicians other than 

only Charlie Parker in the study of mutual information. The evidence is, however, that 

mutual information is a useful tool in studying soloist/accompanist interaction. Perhaps 

there are specific issues that can be explored using mutual information, similar to the 

anecdote regarding Sadik Hakim/Dizzy Gillespie. 

 

Thus, building on previous work in the field of information theory as applied to 

classical and jazz music, and using both experimental and computational techniques, this 

work adds a valuable new perspective on the study of rhythmic complexity in jazz. 
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Appendix A 

Syncopation Metric of Longuet-Higgins and Lee 

 

Longuet-Higgins and Lee (1984) present a simple but elegant metric (the “LHL” 

metric) for describing syncopation. Since this is applied in the experimental portion of 

this study, I will explain it here in some detail. 

The LHL metric, when applied to eighth-note rhythms in 4 4 time, works by 

assigning each part of the measure a number: 0 for the downbeat, –1 to beat three, –2 to 

the off–beat quarter notes (two and four), and –3 to the four off-beat eighth notes (the 

“ands” of one, two, three, and four). A syncopation is said to occur when a note sounds 

before a tied note or rest having a greater (more positive) value than the sounding note. 

The “weight” of the syncopation is equal to the greater value minus the lesser value, 

which will necessarily be a positive number. Note that a single sounded note can 

correspond to multiple syncopations, according to the number of rests and/or tied notes 

following the sounded note. 

Several examples are shown in Figure 18: (a) A note that sounds on the “and of 

two” (i.e., its note attack begins an eighth–note after the second beat) and is tied to a 

quarter note on beat three will count as a syncopation, since the value assigned to the tied 

note (–1) is greater than the value assigned to the sounding note (–3). The weight of the 

syncopation will be –1 – (–3) = 2. If there is a rest on beat four, there will be an 

additional syncopation of weight 1, obtained from the difference between the value 

assigned to beat four (–2) and the value assigned to the sounding note (–3). (b) A quarter 

note that sounds on beat four and is tied over to the beginning of the next measure will 
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count as a syncopation, since the value assigned to the tied note (0) is greater than the 

value assigned to the sounding note (–2). The weight of the syncopation will be 0 – (–2) 

= 2. (c) A note that sounds on the and of four and is tied to the beginning of the next 

measure will count as a syncopation with weight 0 – (–3) = 3. If there is a rest on beat 

two, there will be another syncopation, this one of weight 1, obtained from the difference 

between the value assigned to beat two (–2) and the value assigned to the sounding note 

on the and of four (–3). 

 

 

 

Figure 18. Three examples of the LHL metric: a) a total of three (two syncopations 
initiated by the same note); b) a total of two (one syncopation only); 

a total of four (two syncopations initiated by the same note)  
 

 For purposes of this study, LHL scores will be divided number of note onsets to 
obtain the “LHL quotient” or “LHLQ.” 
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Appendix B 

Catalog of Excerpts 

Name Date Title TS IOIs acc's Entropy 
Armstrong 26 Cornet Chop Suey pt. 2  14 84 3.138 
Armstrong 27 Potato Head Blues pt. 1  12 31 3.24 
Armstrong 27 Potato Head Blues pt. 2  12 100 3.03 
Armstrong 29 Mahogany Stomp pt. 1  8 19 2.795 
Armstrong 29 Mahogany Stomp pt. 2  8 14 2.815 
Armstrong 29 Mahogany Stomp pt. 3  10 54 2.58 
Armstrong 31 Stardust pt. 1  15 39 3.491 
Armstrong 31 Stardust pt. 2  18 45 3.327 
Armstrong 31 Stardust pt. 3  23 55 4.174 
Armstrong 38 I Double Dare You  15 65 3.11 
Armstrong 43 I Never Knew  12-13 33-35 3.201 
Armstrong 44 I'm Confessin' (That I Love You)  14 43 3.208 
Armstrong 47 It Takes Time  9 36 2.785 
Armstrong 53 The Gypsy  19 71 3.305 
Armstrong 56 A Foggy Day  11 32 3.02 
Armstrong 63 Hello Dolly  13 39 2.803 
Armstrong 67 What a Wonderful World  23 79 3.877 
Hawkins 26 The Stampede  11 72 2.9 
Hawkins 33 Talk of the Town  16 76 3.393 
Hawkins 39 Body and Soul  20 236 2.773 
Hawkins 40 Bouncin' With Bean  12 86 3.027 
Hawkins 40 My Blue Heaven  9 75 2.046 
Hawkins 41 Disorder at the Border  12 108 2.724 
Hawkins 44 Flyin' Hawk  15 100 3.336 
Hawkins 50 Ballade pt. 1  15 57 3.238 
Hawkins 50 Ballade pt. 2  15 55 3.435 
Hawkins 54 Lullaby of Birdland  16 55 3.341 
Hawkins 57 Blues for Tomorrow  17 215 2.002 
Hawkins 57 Epistrophy  18 82 3.665 
Hawkins 62 Satin Doll  24 215 2.862 
Hawkins 62 Wanderlust  21 62 3.794 
Hawkins 63 Just Friends  15 79 3.122 
Young 36 Lady Be Good  16 99 3.465 
Young 36 Shoe Shine Boy  20 86 3.656 
Young 38 Back in Your Own Backyard  13 51 3.271 
Young 38 When You're Smiling  12 44 3.071 
Young 42 Body and Soul pt. 1  19 73 3.616 
Young 42 Body and Soul pt. 2  14 52 3.392 
Young 42 Indiana pt. 1  18 92 3.798 
Young 42 Indiana pt. 2  21 92 3.557 
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Young 42 Tea For Two 1942  17 113 3.189 
Young 45 D.B. Blues  17 87 3.64 
Young 46 It's Only a Paper Moon  21 163 3.328 
Young 47 Sheik of Araby pt. 1  17 77 3.624 
Young 47 Sheik of Araby pt. 2  14 46 3.463 
Young 47 Tea For Two 1947  17 82 3.435 
Young 50 Blues For Greasy JATP  21 38 4.186 
Young 52 Ad Lib Blues pt. 1  22 132 3.441 
Young 52 Ad Lib Blues pt. 2  19 194 3.158 
Young 56 All of Me pt. 2  21 117 3.692 
Young 56 Taking a Chance on Love  22 134 3.822 
Young 56 You Can Depend on Me  22 158 3.658 
Christian 39 Christian Honeysuckle Rose  13 64 2.83 
Christian 39 Flying Home  10 61 2.789 
Christian 39 Good Morning Blues  17 46 3.497 
Christian 39 Rose Room  17 60 3.043 
Christian 39 Seven Come Eleven  17 43 3.638 
Christian 40 Benny's Bugle  13 35 3.241 
Christian 40 Gone With "What" Wind  13 39 3.22 
Christian 40 Grand Slam  16 36 3.557 
Christian 40 I Can't Give You Anything But…  13 34 3.002 
Christian 40 Six Appeal  9 36 2.695 
Christian 40 Till Tom Special  11 20 3.003 
Christian 40 Wholly Cats  11 33 3.097 
Christian 41 Breakfast Feud  13 38 3.199 
Christian 41 I've Found a New Baby  10 46 2.828 
Parker 40 Moten Swing  13 58 2.522 
Parker 40 Parker Honeysuckle Rose  10 62 2.199 
Parker 40 Parker Lady Be Good  12 50 2.609 
Parker 41 Swingmatism  11 18 3.264 
Parker 42 Hootie's Blues  12 32 3.011 
Parker 45 Billie's Bounce  17 66 3.351 
Parker 46 Yardbird Suite  14 48 3.556 
Parker 47 Bongo Beep  13 40 3.216 
Parker 47 Cheryl  18 46 3.538 
Parker 47 Crazeology  12 53 2.699 
Parker 47 Ornithology  17 43 3.461 
Parker 48 Segment  17 93 3.414 
Parker 49 Scrapple From the Apple  17 42 3.747 
Parker 50 Bloomdido  17 73 2.972 
Parker 50 Mohawk  20 78 3.656 
Parker 51 Au Privave  19 44 3.952 
Parker 51 Blues For Alice  21 54 4.033 
Parker 51 She Rote  22 93 3.554 
Parker 53 Chi Chi  21 102 3.794 
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Parker 53 Now’s The Time  25 78 4.157 
Parker ?? Dewey Square  16 46 3.297 
Parker ?? Donna Lee  21 86 3.756 

 

TS checked indicates a 2:1 swing ratio and dependence of entropy on swing ratio 

Multiple excerpts from a single recording reflect intervening passages played by other 
soloists or intervening ensemble passages 

For Armstrong/I Never Knew, ranges of num_IOI and num_accent, and average entropy, 
are given for different dispositions of Armstrong’s “clams” 

For a detailed list of recording data, please contact the author at 
dougabrams.jazz@gmail.com 
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Appendix C 

Treatment of Estimated Errors 

There were 6,299 accented notes included in the corpus, and thus easily 20,000–

30,000 notes altogether. In a manually transcribed corpus of this size, there are bound to 

be errors. Overall, the error rate – estimated using a random sample of 37 excerpts – was 

fairly low: insertion, deletion, or translation of accented notes as a percentage of number 

of accented notes was about 0.5%, and as a percentage of all notes, was lower. There is a 

potential problem, however, in that the errors are distributed evenly across excerpts; thus, 

the number of excerpts with minor errors as a percentage of the total number of excerpts 

– estimated using the same random sample – was much higher: about 40%. Given that 

files discovered with errors were corrected, this means that in the corpus as a whole, there 

were probably about 20 files with minor errors after review and correction. 

Once errors were discovered, I used four methods of quantifying them. 

Percentage errors in entropy, number of IOIs, and number of accents were identified, and 

pairwise p values were calculated before and after correction. For  a limited corpus of 

twelve error–containing excerpts, Table 10 gives the mean, median, and standard 

deviation of percentage error in entropy, percentage error in number of IOIs, and 

percentage error in number of accents. Note that the number of IOIs exhibits the largest 

average percent error, since making a small change to the data can result in a change in 

number of IOIs of one or even two, both of which are relatively large in terms of number 

of IOIs. Finally, including the twelve error-containing excerpts mentioned above and 

correcting them one by one did not qualitatively change the pairwise p values.  
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While p values are relatively insensitive to simple errors, a review of the data 

indicates that adding or deleting excerpts for various reasons has a more pronounced 

effect. In the course of analyzing the data, I realized that some excerpts had to be deleted 

for reasons having to do with the properties of the swing eighth-notes used, either 

because they were too close to straight-eighths, or because it was too difficult to ascertain 

whether or not the eighth-note pairs had a 2:1 ratio. For example, for a data set with five 

error-containing excerpts and with just one more excerpt than the final data set, the 

Christian/Young p value was 0.0406, while for the same data set with four more excerpts 

than the final data set, the p value was 0.0603. Furthermore, a data set from early in the 

experiment with many more error-containing excerpts (27) and with four more excerpts 

than the final data set yielded a p value for the Christian/Young pairwise comparison of 

0.0541. For all data sets examined, the only p values that differ qualitatively from those 

obtained from the final set are those corresponding to the Christian/Young comparison, 

and these were at least “marginally significant” (0.0518–0.0627). In any case, it appears 

as though adding or deleting excerpts has a greater effect on p values than the presence or 

absence of simple errors. 

Having settled on a final corpus, and estimating that no more than twenty excerpts 

contain errors, I argue that the p values for Christian/Young and for all other pairwise 

comparisons are valid. Even if there are twenty error-containing excerpts, it appears that 

correcting errors drives the Christian/Young p value down, therefore not affecting 

significance. There is, however, a chance that the presence of unknown errors may have an 

unpredictable effect on the Christian/Young p value, perhaps resulting in marginal 
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significance or even insignificance. In this case, the Armstrong/Young and Parker/Young 

p values still indicate significant pairwise comparisons. 

 

 

 

Table 10. Statistical descriptions of three measures of percentage error: Entropy, Number 
of IOIs, and Number of accents for a corpus of 12 error-containing excerpts 

  

Quantity/Statistic Mean Median Standard 
Deviation 

Entropy 1.603 1.1 1.213 
Number of IOIs 3.683 4.7 3.510 

Number of accents 0.75 0.95 0.722 
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